a2 United States Patent

Wang et al.

US009075768B2

US 9,075,768 B2
Jul. 7, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(60)

(1)

(52)

(58)

HIERARCHICAL MULTI-CORE PROCESSOR
AND METHOD OF PROGRAMMING FOR
EFFICIENT DATA PROCESSING

Applicant: AXIS SEMICONDUCTOR, INC.,
Boxborough, MA (US)

Inventors: Xiaolin Wang, Concord, MA (US);
Qian Wu, Redwood City, CA (US); Ben
Marshall, Stow, MA (US); John
Eppling, Acton, MA (US); Jie Sun,
Sudbury, MA (US)

Assignee: RS STATA LLC, Waltham, MA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 501 days.

Appl. No.: 13/658,141

Filed: Oct. 23,2012
Prior Publication Data
US 2013/0138919 Al May 30, 2013

Related U.S. Application Data

Provisional application No. 61/564,970, filed on Nov.
30, 2011.

Int. Cl1.

GO6F 9/38 (2006.01)

GO6F 15/173 (2006.01)

GO6F 15/80 (2006.01)

GO6F 9/00 (2006.01)

U.S. CL

CPC ... GO6F 15/17362 (2013.01); GO6F 15/8023

(2013.01)
Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2003/0088610 Al 5/2003 Kohn et al.

2008/0133885 Al 6/2008 Forsyth

2009/0024836 Al 1/2009 Shen et al.

2011/0010481 Al* 1/2011 Hamadani etal. ........... 710/313

FOREIGN PATENT DOCUMENTS

JP 2010079622 A 4/2010
OTHER PUBLICATIONS

PCT Search Report & Written Opinion for PCT Appl. No. PCT/
US2012/061442, dated Feb. 20, 2013, 9 pages.

* cited by examiner

Primary Examiner — Scott Sun
(74) Attorney, Agent, or Firm — Maine Cernota & Rardin

(57) ABSTRACT

A multi-core processor includes a tree-like structure having a
plurality of computing cores arranged in hierarchical levels,
the cores all having the same logical architecture. Each core
can include computing, interconnecting, and/or storage ele-
ments. The functionality of an individual element can be
supplied by an entire core in a lower level. A method for
programming the processor includes hierarchically decom-
posing an application into interconnected sub-functions,
mapping the sub-functions onto groups of cores at appropri-
ate levels of the processor, and interconnecting the mapped
sub-functions so as to hierarchically compose the complete
application. Sub-functions can be sequential, concurrent,
and/or pipelined. Interconnections can be static or dynami-
cally switchable under program control. Interconnect ele-
ments can also be used to implement flow control as needed in
pipelined operations to maintain data coherency. The decom-
posing and mapping process can be iterated on sub-functions
s0 as to optimize load balancing, software performance, and
hardware efficiency.

21 Claims, 17 Drawing Sheets

100 Computingi Plane

Control Plane |




US 9,075,768 B2

Sheet 1 of 17

Jul. 7, 2015

U.S. Patent

sindinQo
eleq

—

[0Jju0D

1 8inbiy
yjedeje(q 701
uoneinbiyuon snjels
BUBIA 104U0T I

sugld Bunndwon 001 |

sindu
ejeq



US 9,075,768 B2

Sheet 2 of 17

Jul. 7, 2015

U.S. Patent

g} einbidg
sindino 1 S / sindu
ereq < Yredejeq &0l U ereq
I ol
s.ﬂ..\\\xi
801 R
[0NU0D) uoneinblyuon shjels
T T T Ty T T T T Yoonysyy
Jaousanbag
B Nvd sue
NYd fcd
19p023(] - - Jaouanbeg uo1onIsu|
_%wmw\w J10J99A 104U09D [ xspuj AD .| Buousnbeg jOII0D

! d m

sueld iBunndwon 001 |



US 9,075,768 B2

Sheet 3 0f 17

Jul. 7, 2015

U.S. Patent

21z oLz ¢ 8nbi
a0? zans X 902
) ..%.-Q N N
_ jansT ! T 1 Lqns
| 8|4 jo[uogy | -0
e - - [ Y SuBld ﬂob:oo i ] o
7w N T r// \\ e \ﬂ/
pqns pu \ / o A Lans
o ——VaN— \ \ — — o
[eAe ¥ £ % : / / ¥ 1 1 jenay
7 aue]d |oJUoD duy Y \ PN p I BUBl] [oRU0) _
~ = g \ namne T 7
////// \\\\\ < Z / \ ~ \\\\\
//V./\\ Ry N/ ]
\/ ~
% l B
FAS T4 T4 N
&\ (g} swewesg ebeioig (1) sz peuLcsew {¥} suewerg emdwop
601 g jongvy
sue|d [0JjU0D Ol

auei4 Bupndwon wwwu




US 9,075,768 B2

Sheet 4 of 17

Jul. 7, 2015

U.S. Patent

ews)3
0 jers]

¢ aunbiy
spdup | L,/,v
L joAeT -
SN Qw no A% /\/\ T
BUB| |OBUCH
S,
//L/ e
//\\\
snduj b
\\\ \\\\
sindng < _—
N 0c 067
usuis|g — sjusaly
108ULCIBIL] ¢0i andwiony
A A
Y

U 104U0D

— 80z

e 1BAGT]



U.S. Patent

Jul. 7, 2015

Sheet 5 0f 17

400

S
:{> out_ 0

fn

:> out_y

X

US 9,075,768 B2

404
402 Decompose
406 \ f 410
in 0 —— *in_fn0_0 out_fn0_0 in_fn2_0 out_fn2_0 :> out 0
fnQ out_f0_1 fn2
in_1 ——— }in_fn0_1 out_fn0_2 in_fn2_1 out_fn2_1 :|> out_1
408 \ f 412
in2 ——— *in_fn1_0 out_ fn1_0 in_fn3_0 out_fn3_0 :> out 2
in_3 ———{in_fn1_1 fn1 fn3 out_fn3_ 1 :{> out 3
in4 ——in 1 2 out_fn1_2 in_fn3_1 out_fn3_2 [———"> out_4
f 414
in_fnd_0
fn4 out fna 0 :> out 5

Figure 4




U.S. Patent Jul. 7, 2015 Sheet 6 of 17 US 9,075,768 B2

500
A[0.39] s
fn_xyz ~c
B[0.39)————
J Lﬂemmpose
/ no.39) / B(0..38]
} v ;
RA({A+)) RAC(@++)) 3
| i
v v i
" ;
+ %
|
eeeeeeeeeeeeeee S
o
Legend yes
—————»  Data Flow Figure 5
End

,,,,,,,, > Confrof Flow



U.S. Patent

A[0.39] ————

SIS | —

,,,,,,,,,,,,,,,

RA{"{A++})

Jul. 7, 2015 Sheet 7 of 17

US 9,075,768 B2

X—— | fn_xyz_mod

|~ 600
:>C

u Decompose

RA(*(B++))

e 602

fn_

mac

*
‘7
+

B[0..39] / (o.ég) ;

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Data Flow
End

Control Flow

Figure 6



U.S. Patent Jul. 7, 2015 Sheet 8 of 17 US 9,075,768 B2

Figure 7

;
*
+

©
End

no

 yes

Data Flow
Control Flow

*

hA

O y
End

L

Legend



US 9,075,768 B2

Sheet 9 of 17

Jul. 7, 2015

U.S. Patent

/ﬂ,wmw

{ jBATT]

FA A
~ 14874 ~ 002 ~
. S o
] 1
suesusia ebimg BB DeULDISIE suswer sinduon
snels vonenByucn
aue|d jo5uo0) [0
u @é\
dagy
D0L -
1 guyno L gur u
.\\ cuj
o008 0 guino O zuf u
£
Z ouyno L ouf u
I ouy o QU
Q aunbi- e ou_ll
\k\ o owine g ouu
008 o
eus



U.S. Patent Jul. 7, 2015 Sheet 10 of 17 US 9,075,768 B2

Figure 9A



Level

U.S. Patent Jul. 7, 2015 Sheet 11 of 17 US 9,075,768 B2
0 lime
in_fn0_0 out_fn0_0 Figure OB
fnO out 0 1
in_fn0_1 out_f0_1
t1
in_ fn1 0 out fn1 0
in_fn1_1 fn1
in_fn1_2 out_fn1_2
2
in_fn2_0 out_fh2_0
fn2
in_fn2_1 out 2 1
i3
in_fn3_0 out fn3_0
fn3 out fn3_1
in_fn3_1 out fh3_2
t4
in_fn4_0
fn4 out_fn4 Ofi]
in_fn4_1
5 Y
Control Plane
l Control Conﬁgurationl StatusT
Compute Elements Interconnect Elements Storage Elements




US 9,075,768 B2

Sheet 12 of 17

Jul. 7, 2015

U.S. Patent

01 8inbiy

—

-0 dnolgy 8oInosey

[

(—

W1 dnoio) 80IN0sSayY

4
snjejs fuoneinbyuos [0.43U0D) snjejs uoneInBiuon H\ot:oo 0 [9N87]
h 4 1
aue|d [0JjU0D
depy depy
4
L L L L it
I LuUj Ino ¢ Luj ul ¢ Qu} Ino I Quj Ul
Lul 1w u L ous Ino QU
0 Luf o 0 Luru 0 0us Ino 0 ou ul
3
auly



US 9,075,768 B2

Sheet 13 0of 17

Jul. 7, 2015

U.S. Patent

L1 8anbiy

—

L
K=

il

=) =)

. .
] ]

=) =)

(—

0 ARG S0IN0SEN

g0 dnoicy SQNn0sSeN

-0 dnoicy sLInosay

4 A y A A A
snjels ‘Bruon JoJJuoD snjels ‘Buon Jojuo) snjels ‘Bruon Jojuon 0 18na7]
A v \ 4
aue|d |oJU0D
dew dep deyy
4
£}
L pul ul Z €uf o L gul ul l guj Jno L gui ul
[lo vuyno {HUJ 1 eu o guUl cu}
0 Ul Ul 0 €U o 0 gus ul 0 gus Ino 0 gui ul
Zi
sLup



U.S. Patent Jul. 7, 2015 Sheet 14 of 17 US 9,075,768 B2
fn 234
P :/ in fn2 0 out 2 0
fn_01 /////////// o
n 00 om0 ol i 2 1 out T2 1
N0 out 0 1 _— /////;/////
nf0 1 out®n0 2. | ;7/7 T im0 out 30
\:}}Z/f\/:/\/ fn3 out_in3 1
nml 0 outfni 0F——— — “in 31 out 32
in_fn1_1 fn \\\\\\\\\\
nn2 outfifll T in_fnd 0
\\\\\\\\\\ fn4d out frd O[]
T i e
Y ° y g
Control Plane
Level
1 Conzroil Configuration l StafusT
Level 0 Element A Level 1 Interconnect Element Level 0 Element A

Figure 12



U.S. Patent

fnO

out fn1 0

out fn1 2

fn1

Jul. 7, 2015 Sheet 15 of 17 US 9,075,768 B2
N o <t
= £ = o
o
s
5B
LL.
O, ~— Z o -\ o E
o\ fﬁ\ 2 2 /= |
(@)
W
o
8=
>
Q




US 9,075,768 B2

Sheet 16 of 17

Jul. 7, 2015

U.S. Patent

AV 4

¢ U}

YIBULIDIEM
i 1soue

80vL

1 einbi

[SUUBYD SNIEIS 3 JONUOD DIeMNoeq f >

civl

.
_

JOUUBYD BIBD DIRMIOY

JOULIBYD STRIS % JOUOD DIBMIO]

Lyl

O Zul W<=0 OW In

°(

210, 4%

ouy

00vi

yOviL




U.S. Patent Jul. 7, 2015 Sheet 17 of 17 US 9,075,768 B2

Profile the application
1502
% /-/ 3 SChei‘iuig ?ach mapned
sub-function
Select "tlop” level
________________________ % % f‘iﬁzi}
? : - Examine the scheduler
; > Determine decomposition and < ; output against
; Gé}rreﬁpﬁﬂdi?;g Cwﬁmpﬁgiti(}ﬂ : pr(}paga‘&@d constraints,
mechanism :
1504 1506 : % 1522
Propagate system level All constraints me‘t\?\>
requirements to sub-function : P
constrainis : yes
1524 ne
v 1508 -
Decompose the algorithmic ul M(;VS iﬁi hig?er |
sub-function : evelas lop leve
v 1510 E 1526 v
Partition the hardware : Repeate unti
rESOUIEeS : all sub-functions are
: mapped.
v 12 %
Map the decomposed L1530
sub-function to the partitionad : Compose all sub-function
rasOUrce group : programs to form
______________________ % compiate application

< Lowest Level?
yes

1518 %na \"1514

Move to next level

Figure 15




US 9,075,768 B2

1
HIERARCHICAL MULTI-CORE PROCESSOR
AND METHOD OF PROGRAMMING FOR
EFFICIENT DATA PROCESSING

RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 61/564,970, filed Nov. 30, 2011, which is
herein incorporated by reference in its entirety for all pur-
poses.

FIELD OF THE INVENTION

The invention relates to microprocessor designs and pro-
gramming methods, and more particularly, to multi-core pro-
cessor designs and programming methods for efficient data
processing by a multi-core processor.

BACKGROUND OF THE INVENTION

A growing need exists for hardware designs that can pro-
cess data more rapidly, and for programming methods that
can make optimal use of processor resources. This growing
demand for processing speed is due, at least in part, to an
expanding demand for “real time” computing devices, which
are used in a wide variety of fields, such as telecommunica-
tions, entertainment, gaming, and other local and internet-
driven applications.

Although general purpose processing “cores” used in com-
puting devices have become faster and more efficient, it is
difficult if not impossible for a single, general purpose pro-
cessor, or “core,” to meet the computing needs of many real-
time devices. Instead, “multi-core” processors are widely
used for these applications. Some multi-core processors are
highly flexible and adaptable, such as dual-core and quad-
core general purpose processors used in personal computers,
as well as other processors that include a plurality of general
purpose cores. However, these designs are not practical for
many real-time high-speed and/or low-power applications.

Other designs, such as pipeline processors and “field-pro-
grammable gate arrays” (FPGA’s), include specialized cores
that provide greater speed while retaining a certain degree of
flexibility and adaptability. Still other designs include cores
that are very fast but somewhat rigid in their applications,
such as “digital signal processors” (DSP’s) and “application-
specific integrated circuits” (ASIC’s).

In general, existing solutions offer a range of trade-offs
between speed on the one hand and adaptability and flexibil-
ity on the other hand. Optimal device speed is generally
achieved when the architecture of the processor is designed
and configured specifically for the intended purpose, and the
software is written to take maximum advantage of the spe-
cialized hardware. However, this approach does not allow for
amortization of design costs over a plurality of different
applications, nor does it provide for product evolution as new
requirements are recognized and new applications are con-
ceived. This approach is also problematic when the intended
device is required to perform many different functions.

What is needed, therefore, is a multi-core processor design
and a corresponding method of programming the processor
that will provide high speed data processing while also being
highly programmable and flexible for optimal use in multi-
purpose devices and for adaptability as new requirements and
new applications arise.

SUMMARY OF THE INVENTION

One general aspect of the present invention is a multi-core
processor that includes a tree-like structure having a plurality

10

15

20

25

30

35

40

45

50

55

60

65

2

of computing cores or “planes” arranged in hierarchical lev-
els. Each computing plane can include up to three types of
elements, namely computing elements, interconnecting ele-
ments, and storage elements. The functionalities of individual
elements in a computing plane can be supplied by entire
computing planes located in the next-lower level of the hier-
archy. The entire processor therefore includes a nested set of
computing planes, each being self-controlled and each having
the same logical architecture.

Another general aspect of the present invention is a method
for efficiently programming the multi-core processor
described above. The hardware architecture of the processor
lends itself naturally to the mapping of functions and sub-
functions included in an application. An application algo-
rithm is hierarchically decomposed into interconnected sub-
functions having data inputs and outputs. The sub-functions
are then mapped onto groups of the programmable computing
planes at appropriate levels of the processor, and the inter-
connect resources are used to hierarchically compose the
mapped sub-functions so as to form the complete application
program. The interconnect mechanism is selected based on
parallel processing construct and execution throughput. The
interconnect channels are also used to implement flow control
as needed in pipelined operations so as to adjust the execution
throughput based on the input data and thereby maintain data
coherency.

This process of decomposing all or part of an application
and mapping its sub-functions to different levels and different
partitions of programmable hardware resources is iterated as
needed, so as to optimize load balancing and so as to optimize
software performance and hardware efficiency.

A first general aspect of the present invention is a multi-
core processor that includes a plurality of processing cores,
referred to herein as computing planes, the computing planes
being arranged in a hierarchy of levels including a highest
level and a lowest level, each of the levels including at least
one computing plane, each of the computing planes including
acontrol plane and an associated datapath, each of the control
planes including a sequencing instruction memory that is able
to store configuration and control information applicable to
its associated data path, the configuration information includ-
ing instructions that control manipulation and routing of data
by its associated datapath, each of the control planes being
able to receive status information from its associated data
path, and being able to provide configuration and control
information to its associated data path, each of the datapaths
including at least one data input, at least one data output, and
at least one element, the element being one of a compute
element that is able to manipulate data, an interconnect ele-
ment that is able to route data, and a storage element that is
able to store data, and for at least one of the elements that is in
alevel above the lowest level, the functionality of the element
being provided by a computing plane in a level below the level
of the element.

In embodiments, at least one of the compute elements
includes an internal buffer register that is able to provide
temporary storage for intermediate results.

Invarious embodiments at least one of the storage elements
is able to perform at least one data processing function. In
some of these embodiments the data processing function is
computing an address from data, rounding of data, saturating
of data, or adding or subtracting of two consecutive data
inputs

In certain embodiments at least one of the interconnect
elements is able to form a static connection between two other
elements. In some embodiments at least one of the intercon-
nect elements is able to form dynamic connections between



US 9,075,768 B2

3

pairs of other elements, the dynamic connections being
changeable under control of the configuration instructions
supplied by the control plane.

In other embodiments at least one of the interconnect ele-
ments includes both a signal transmission channel and a data
transmission channel, the signal transmission channel being
able to transmit a flow control signal in parallel with data
transmitted by the data transmission channel, the flow control
signal being usable for controlling timing of the flow of data
from the data transmission channel.

A second general aspect of the present invention is a
method for programming the processor described in the first
general aspect to perform a large algorithmic function by
mapping the algorithmic function onto the computing planes
of the processor, where the method includes partitioning the
large algorithmic function into a first layer of sub-functions
with data flow between the sub-functions and associated flow
control, if one of the sub-functions is not suitable for mapping
onto a computing plane of the processor, partitioning the
sub-function into a lower layer of sub-functions having data
flow between the sub-functions and associated flow control,
repeating the step of partitioning the sub-functions into lower
layers of sub-functions until all of the lowest level sub-func-
tions are suitable for mapping onto computing planes of the
processor, allocating processor time slots and hardware
resources to the sub-functions so as to approximately match
the processor resources with relative computational and data
flow complexities of the sub-functions, and configuring inter-
connects of the processor according to the data flows between
the sub-functions.

Embodiments further include configuring at least some of
the interconnects for data transmission with flow control so as
to maintain synchronicity of data during execution of the
algorithmic function. Some embodiments further include
appending null operations to at least one of the sub-functions
s0 as to eliminate a data dependency of an execution time of
the sub-function. In other embodiments the steps of partition-
ing the large algorithmic function and partitioning the sub-
functions are carried out by an automatic software tool.

In various embodiments, the step of partitioning the sub
function includes partitioning any sub-function having a data
dependent execution time into sub-functions that do not have
data dependent execution times.

In certain embodiments allocating processor time slots and
hardware resources to a hierarchy of sub-functions includes
selecting a level of the processor to be a highest level of
allocation to the hierarchy of sub-functions and mapping each
of the sub-functions in the hierarchy onto a computing plane
that is at a level of the processor at the same offset below the
highest level as the offset of the sub-function below the high-
est layer of the sub-functions in the hierarchy.

Various embodiments further include repeating the step of
allocating processor time slots and hardware resources so as
to achieve load balancing of the hardware resources.

In certain embodiments configuring the interconnects of
the processor according to the data flows between the sub-
functions includes combining sub-functions having fixed
execution times and providing flow control mechanisms so as
to compose functions having data-dependent execution
times. Some of these embodiments further include estimating
the data-dependent execution times based on an input data
range and the data flow pattern. And some of these embodi-
ments further include estimating at least one of an upper
bound, a lower bound, and a distribution of the execution
times.

In various embodiments configuring the interconnects of
the processor according to the data flows between the sub-

10

30

40

45

55

65

4

functions includes combining sub-functions according to at
least one of sequential composition, concurrent composition,
and pipelined composition.

In certain embodiments configuring the interconnects of
the processor according to the data flows between the sub-
functions includes using buffer storage to absorb a difference
between a rate of data production of a first element and a rate
of data consumption of a second element. In some of these
embodiments the buffer storage is configured to produce a
“back pressure” signal when an amount of data stored in the
buffer storage exceeds a specified watermark amount, the
back pressure signal causing the first element to temporarily
stop producing output data.

And in various embodiments the step of allocating proces-
sor time slots and hardware resources to the sub-functions
further includes using a scheduling tool to schedule overlap-
ping execution of sub-function epilogues and prologues when
possible.

The features and advantages described herein are not all-
inclusive and, in particular, many additional features and
advantages will be apparent to one of ordinary skill in the art
in view of the drawings, specification, and claims. Moreover,
it should be noted that the language used in the specification
has been principally selected for readability and instructional
purposes, and not to limit the scope of the inventive subject
matter.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A is a functional diagram illustrating the basic struc-
ture of computing planes of the present invention;

FIG. 1B is a functional diagram illustrating the structure of
a control plane in an embodiment of the present invention;

FIG. 2 is a functional diagram illustrating the structure of a
data path in an embodiment of the present invention;

FIG. 3 is a functional diagram illustrating a computing
plane in a lower level providing the functionality of an ele-
ment of a data path in a higher level in an embodiment of the
present invention;

FIG. 4 is a functional diagram illustrating the decomposi-
tion of a function into a plurality of sub-functions in an
embodiment of the present invention;

FIG. 5 is a functional diagram illustrating the decomposi-
tion of a function into sub-functions that are related by a loop
operation, the execution time being independent of the data;

FIG. 6 is a functional diagram illustrating the decomposi-
tion of a function into sub-functions that are related by a loop
operation, the execution time being dependent of the data;

FIG. 7 is a functional diagram illustrating a sub-function
for which insertion of null operations can provide a fixed
execution time;

FIG. 8 is a functional diagram illustrating the allocation of
two different sub-functions to the same computing plane dur-
ing different time slots;

FIG. 9A is a functional diagram illustrating the prologue,
kernel, and epilogue of a pipeline function;

FIG. 9B is a functional diagram illustrating a plurality of
sub-functions sequentially composed so as to be executed in
consecutive time slots for processing the same batch of input
data;

FIG. 10 is a functional diagram illustrating concurrent
composition of two sub-functions;

FIG. 11 is a functional diagram illustrating concurrent
composition of three sub-functions;

FIG. 12 is a functional diagram illustrating two groups of
sequentially composed sub-functions having been further
composed in a pipelined composition;



US 9,075,768 B2

5

FIG. 13 is a functional diagram illustrating two groups of
sequentially composed sub-functions having been further
composed in a pipelined composition having five intercon-
nect channels;

FIG. 14 is a functional diagram illustrating the flow control
mechanism for an interconnect port between two sub-func-
tions, whereby data flow is suspended when a buffer storage
in one of the sub-functions is filled to an “almost full” water-
mark; and

FIG. 15 is a flow diagram that illustrates an iterative pro-
cess in an embodiment of the present invention of mapping an
application onto the processor hardware design of the present
invention.

DETAILED DESCRIPTION

One general aspect of the present invention is a multi-core
processor that includes a tree-like structure having a plurality
of computing cores or “planes” arranged in hierarchical lev-
els. Each of the planes of the present invention has the generic
structure illustrated in FIG. 1A. For each computing plane
100 data flows through a data path 102 while configuration
and control signals are provided by a corresponding control
plane 104. As is illustrated in FIG. 1B, the control plane 104
receives status bits 106 from the datapath 102. Depending on
the received status bits, the control plane 104 sends control
bits 108 to the datapath 102 for control and synchronization of
an executing program and configuration bits 110 to the data-
path 102 for specification of hardware operations.

Note that that the datapath 102 includes multiple elements,
each possibly having the same control structure. This struc-
ture repeats at each level.

FIG. 2 illustrates the structure of a specific Level 0 com-
puting plane design (commonly known as a single “core”) in
an embodiment of the present invention. Each computing
plane 100 includes its own control plane 104 and datapath
102. The datapath 102 includes up to three types of elements,
compute elements 200, storage elements 202, and intercon-
nect elements 204.

Compute Elements 200 provide the functionality of com-
puting data output based on data input. In embodiments, at
least some of the compute elements can have internal buffer
registers as temporary storage for storing intermediate results
if needed. Each compute element 200 can consume up to a
fixed number of data bits as inputs from the interconnect
elements 204. Each compute element 200 can produce up to
a fixed number of data bits as outputs to the interconnect
elements 204.

The storage elements 202 provide the functionality of data
reads and writes. In some embodiments the storage elements
204 can also include simple data processing. Each storage
element 202 can store up to a fixed number of data bits in local
memory or registers. Each storage element can retrieve up to
a fixed number of data bits from local memory or registers. In
embodiments, the computation capability included in storage
elements 202 is used to compute addresses from data reads
and writes, and/or to perform simple data processing on data
such as rounding, saturation, and adding or subtracting of two
consecutive data bytes or words as the data is transferred to or
from memory.

Each interconnect element 204 provide the functionality of
establishing connections between two other elements, for
example between a compute element 200 and a storage ele-
ment 202, or between two storage elements 202. In various
embodiments the interconnect elements 204 can form static
connections (i.e. a wire connection between two ports) and/or
dynamic connections (i.e. connections from different sources

10

15

20

25

30

35

40

45

50

55

60

65

6

or to different destinations at different cycles). In some
embodiments, the static or dynamic connections provide flow
control features.

As is indicated in FIG. 2, the functionality of at least some
of the compute elements 200, storage elements 202, and
interconnect elements 204 can be provided by separate com-
puting planes 206, 208, 210 in sub-levels, and the function-
ality of at least some elements in these separate computing
planes 208 can in turn be provided by further computing
planes 212 in lower sub-levels.

FIG. 3 illustrates how a plurality of level O elements 300
can be combined to compose a single level 1 computing plane
206, and how multiple level 1 computing planes 206 can be
combined to compose a single level 2 element 200.

A second general aspect of the present invention is a
method for efficiently programming the multi-core processor
described above. To implement an application algorithm, a
hierarchical decomposition process is applied that succes-
sively partitions a large algorithmic function into sub-func-
tions with data flow between them and associated flow con-
trol.

FIG. 4 illustrates how an application algorithm function fn
400 with x+1 inputs 402 and y+1 outputs 404 is decomposed
in an embodiment of the present invention into five sub-
functions fn0 406, fnl 408, fn2 410, fn3 412, and fnd 414
(x=4, y=5). This decomposition process can then be repeated
separately for each of fn0 406, tn1 408, {fn2 410, fn3 412, and
fnd4 414. In embodiments, this successive and iterative
decomposition process can be carried out by an automatic
software tool, until sub-functions are reached at the lowest
level that can be mapped to a group of programmable hard-
ware resources in the processor design. The software tool
finds efficient mappings of sub-functions to executable pro-
grams on the target group of hardware resources within a
reasonable search time. This is discussed in more detail
below.

FIG. 5 illustrates the decomposition of a function fn_xyz
500 into specific basic arithmetic operations and associated
data flow along with the control flow that reflects a loop
operation.

In embodiments, the decomposition process is based on
algorithm profiling and target hardware design for mapping.
The process has certain constraints (as discussed in more
detail below) but mostly relies on heuristics rather than pre-
cise steps. As is also discussed in more detail below, the
decomposition and succeeding procedures can be iterated to
improve efficiency towards reaching a final mapping of an
application algorithm. The iterative process determinates
when the final mapping achieves a target performance crite-
rion such as a delay below a specified maximum delay or a
throughput above a minimum specified throughput.

In general, the computation complexity at each level of
decomposition should have a good match with the hardware
capability at the corresponding level of the processor hard-
ware design. During the decomposition process, the follow-
ing properties of each sub-function at each level of decom-
position should be captured for use in mapping:

inputs—batch size and input source for each input of the

sub-function;

outputs—batch size and output destination for each output

of the sub-function; and

data dependency of execution time, i.e. whether the execu-

tion time can be dependent on the input data based on an
algorithm analysis.

For certain algorithm functions, the amount of computa-
tion to be performed is dependent on the values of at least
some of'the input data. For these functions, the execution time



US 9,075,768 B2

7
can be dependent on the input data as well. FIG. 6 and FIG. 7
illustrate two examples of such functions. Note that FIG. 6 is
a slightly modified version of FIG. 5, with the loop count
being dependent on input X.

Sometimes it is possible to eliminate a data dependency of
an execution time by appending null operations to the sub-
function, but this reduces hardware efficiency. For example,
an executable program can be produced for the function in
FIG. 7 by inserting null operations into the left branch so that
the two branches have equal execution time.

At the decomposition stage, it is important to note the
possibility of data dependency of execution times, such that
later mapping steps can make decisions based on such prop-
erties. Itis also important that any sub-function having a data
dependent execution time be further decomposed into sub-
functions without such dependencies and having correspond-
ing control flow. This is illustrated in FIG. 6, where the
function fn_xyz_mod 600 is decomposed to fn_mac 602, the
two Rd functions 604, 606 and the control flow for the loop.

Table 1 below shows the properties of fn_xyz 500 in FIG.
5 (assuming it is placed in the place of fnd4 414 in FIG. 4).
Table 2 below shows the properties of the sub-function
fn_mac 602 of fn_xyz_mod 600 in FIG. 6.

TABLE 1
Inputs Batch Size Source
A 40 jinlt}
B 40 fnl
Outputs Batch Size Destination
C 1 out_5
Data Dependency of Execution time
No
TABLE 2
Inputs Batch Size Source
*(A++) 1 RA(*(A++))
*B++) 1 RA(*(B++))
Outputs Batch Size Destination
C 1 fn__mac*

Data Dependency of Execution time

*Feedback

To compile an application program for a traditional pipe-
line processor, the program is decomposed into many sequen-
tial operation steps. Data flow between different steps
assumes a shared storage data flow model. Each ofthe decom-
posed operation steps occupies a time slot which is the cycle
that the corresponding instruction is issued into the processor
pipeline.

With the flexible and hierarchical architecture of the
present invention, an application program is hierarchically
decomposed. At each level of decomposition, each of the
decomposed sub-functions is allocated a time slot and a group
of' programmable hardware resources at a specific level of the
processor architecture. Each sub-function is also assigned a
time slot as a portion of the control sequence for the control
plane at the same level with the associated execution time.

8

This allocation process is iteratively repeated until the last

level of decomposition is reached.

The allocation of time slots and hardware resources to

different sub-functions should match the relative computa-

5 tional and data flow complexities of the sub-functions. The

principle for the allocation is load balancing (i.e. to create an

equal distribution of tasks between resources). In general, the

allocation of time slots and hardware resources needs to be
iterated so as to achieve load balancing.

FIG. 8 shows an example of time and resource allocation
wherein functions fn0 800 and fn2 802 are allocated to the
same resource 100 during different time slots.

When the lowest level decomposed sub-function is allo-
cated to a time slot and a group of hardware resources, each
sub-function has to be mapped to a set of executable programs
for the allocated hardware resources.

The scheduling process will always start with a sub-func-
tion having a deterministic or non-data-dependent execution
>0 time. When the sub-functions are scheduled with fixed execu-

tion times, they can be combined with control flow to com-
pose functions with data-dependent execution times. The
data-dependent execution times can then be estimated based
on the input data range and the associated control flow. Esti-
25 mation of an upper bound, a lower bound, and/or a distribu-
tion of execution times is usually desirable.
The inputs of the scheduler are:
Description of the allocated hardware resources
The compute, interconnect and storage operations that

10

15

30 can be performed each cycle by the resources.
Constraints of the hardware resources such as program
storage
The data flow and control flow graph for a sub-function.
35 The graph should include only basic operations match-

ing the target hardware resources. The graph specifies
the processing of a single batch of input data.
Timing of input availability
By default, all inputs are available at cycle 0, but based
40 on scheduling of other functions, one or more inputs
can be available later than the first input becomes
available (assume at cycle 0)
Objective for scheduling—This can be
Minimize program length

45 Minimize batch processing delay

Maximize batch processing throughput
The most important output of the scheduler is the execut-
able programs. In addition, the following are also important
outputs of the scheduler to be used for composing multiple

50 sub-functions to form larger functions:

the delay of the program, Tdelay, which is defined as the
time (or cycle) when the last output is produced (i.e. end
of the program), assuming the program starts execution
at cycle 0;

55 the throughput of the program, Tnext, which is defined as
the time (or cycle) when the program can start process-
ing of the next batch of input data, assuming the pro-
cessing of the current batch starts at cycle 0;

the timing of the output availability, which can be used as

60 the timing of the input availability for other functions;

and

the scheduler performs the task of scheduling each data
flow and control operation to a specific cycle, subject to
input availability, data dependency in the flow graph,

65 resource availability every cycle, hardware structural
constraints, and overall storage constraints for data and
program.



US 9,075,768 B2

9

The scheduler will utilize a search algorithm with these
constraints and the chosen objective as the optimization tar-
get.

The output of the scheduler will be an executable sequence
of operations that the allocated hardware resources can per-
form. In general, this executable program can be divided into
three portions:

A prologue at the beginning of the execution during which
the pipeline stages ofthe allocate hardware resources are
NOT fully utilized to execute this portion of the opera-
tions sequence. This is typically the time it takes to load
the pipeline.

A kernel that starts with a cycle during which the pipeline
stages of the allocated hardware sources are fully uti-
lized and end with a cycle of the same characteristic.
This is typically the steady state of the execution.

An epilogue at the end of the execution during which the
pipeline stages of the allocate hardware resources are
NOT fully utilized to execute this portion of the opera-
tions sequence. This is typically the time it takes to drain
the pipeline.

For example, for a loop with each iteration containing
operations A, B, C, and D that can be mapped to execution
over 4 cycles on 4 independent hardware pipeline stages, the
execution of the whole loop can be viewed as illustrated in
FIG. 9A.

The definition of prologue, kernel, and epilogue apply to
general execution of a program, not just for loops. Prologue
and epilogue execution can be combined with execution of
other functions to shorten overall execution. The start cycle
and end cycle of the kernel during all the pipeline stages for
the allocated resources are used indicate the time point
beyond which no combination of execution can be done. If the
execution of a sub-function never uses all the pipeline stages
for the allocated resource, then by definition the execution
includes only a prologue portion.

The delay of the program, Tdelay, which is defined as the
time (or cycle) when the last operation is completed (i.e. end
of the program), assuming the program starts execution at
cycle 0 is the sum of execution time for all parts, i.e.
Tdelay=Tprologue+Tkernel+Tepilogue.

When sub-functions at the lowest level of decomposition
are mapped, they need to be composed into larger functions
using the resources of the hardware design as described
above. There are three main mechanisms for the composition
of sub-functions:

Sequential Composition;

Concurrent Composition; and

Pipelined Composition.

Sequential Composition

Sub-functions can be sequentially composed by executing
them in consecutive time slots for processing of the same
batch of input data. FIG. 9B shows an example of sequential
composition. For a single level of decomposition, this is
equivalent to the sequential execution of instructions in tra-
ditional single-core processors. For the decomposition pro-
cess currently discussed, each sub-function can be further
decomposed with the same or another mechanism at the next
level. This process can be repeated until the lowest level is
reached.

For sequentially composed sub-functions, all data flows
are achieved through shared storage. The initial state of the
current sub-function (i.e. input data in storage) is the end state
of the preceding sub-functions (i.e. output data in storage).
For sub-functions without a preceding sub-function, the ini-
tial state is system input in storage.

10

15

20

25

30

35

40

45

50

55

60

65

10

For a sequentially composed function, the Tdelay of the
composed function as defined above can be computed as the
sum of Tdelay for all sub-functions in the sequential compo-
sition. With reference to the examples shown in FIG. 9B,

Tdelay(fir)=Tdelay(fi:0)+Tdelay(fiz] )+ Tdelay(fi2 )+
Tdelay(fn3)+Tdelay(fir4)

In some embodiments, however, when two sub-functions
fna and fnb form a sequential composition fn_ab, a schedul-
ing tool can be used to determine whether the epilogue of fna
can be combined with the prologue of fub and the time of
overlap Toverlap(fna,fnb). The key to overlapping execution
of epilogue and prologue is non-overlapping resource usage
between the two. Then for fna, the time to load the next batch
of processing which is fnb is:

Tnext(fia)=Iprologue(fia)+Tkernel(fiza)+7epilogue
(fra)-Toverlap(fra fub)

and the delay for the composed function fn_ab is

Tdelay(fiz__ab)=Tprologue(fia)+ITkernel(fra)+Tepi-
logue(fia)-Toverlap(fira fub)+Tprologue(fib)+
Tkernel(fih)+Tepilogue(fib).

The time to load the next sub-function for fn_ab or fnb will
depend on the prologue of the sub-function to be executed in
the next time slot:

Tnext(fia)=Iprologue(fia)+Tkernel(fiza)+7epilogue
(fra)-Toverlap(fha foa)
Concurrent Composition

Sub-functions can be concurrently composed by executing
them in parallel in different groups of hardware resources for
processing of the same batch of input data. FIG. 10 and FIG.
11 show examples of concurrent composition.

For a concurrent composition, the sub-functions have to be
independent of each other. There should be no data or control
interdependency between them.

For a concurrently composed function, the Tdelay of the
composed function as defined above can be computed as the
maximum Tdelay of all of the sub-functions in the concurrent
composition.

For the example illustrated in FIG. 10

Tdelay(fiz_ 01)=max(Tdelay(#0),7delay(fir1)),
and for the example illustrated in FIG. 11

Tdelay(fin_ 234)=max(Tdelay(f2),7delay(fi3),7delay
).

For a concurrent composition of two sub-functions fha and
fnb the kernel of fn_ab is the overlapping time period of the
fna kernel and the fnb kernel. (i.e. the period where both
sub-functions are in their kernel periods). The time period
betsween 0 and Tdelay before the composite kernel is defined
as the prologue, and the time period between the end of the
kernel and Tdelay is defined as the epilogue. In some embodi-
ments the prologue, epilogue and kernel as so defined can be
used by a scheduling tool to determine overlapping execution
in further sequential and pipeline compositions.

Closely Coupled Concurrent Threads

Two sub-functions fha and fnb in a concurrent composition
are defined to be closely coupled concurrent threads if Tdelay
(fna) and Tdelay(fnb) are equal to each other and are equal to
a constant (i.e. the execution delay is non-data-dependent).

For closely coupled concurrent threads, if their start time is
synchronized, their end time is also synchronized by the
construction of the executable program by the scheduler. No
control sequences for the two threads are necessary to keep
them in synchronization at the end of the execution.



US 9,075,768 B2

11

Loosely Coupled Concurrent Threads

Two sub-functions fna and fnb in a concurrent composition
are defined to be loosely coupled concurrent threads if Tdelay
(fna) is not equal to Tdelay(fub).

It both Tdelay(fna) and Tdelay(fnb) are constants (i.e. non-
data-dependent), one of the programs can be padded with null
operations to make Tdelay(fna)=Tdelay(fnb). The two
threads will then be closely coupled, but at the cost of some
loss in hardware efficiency.

Ifeither Tdelay(fna) or Tdelay(fnb) is data dependent, then
the two sub-functions, or “threads” are always loosely
coupled. If the end points of the two threads need to be
synchronized, the control plane that controls the two threads
will need to monitor the end-of-program signals provided by
each of the threads. When both signals are received, the
control plane can send out control signals to related hardware
resources to establish a common time reference (i.e. synchro-
nize them).

Assume the two concurrent compositions fn_ 01 and fn234
in FIG. 10 and FIG. 11 respectively utilize the same hardware
resource group. [f fn_ 01 and fn_ 234 are sequentially com-
posed, the end point of fn_ 01 will need to be synchronized so
that reconfiguration of the hardware from two groups to three
groups can be performed. If fn0 and fnl are closely coupled
concurrent threads, no synchronization procedure will need
to be written, since the flow of the codes into the next section
will be synchronized automatically. If fn0 and fnl are loosely
coupled concurrent threads, a synchronization procedure at
the end of fn0 and fnl will be necessary.

Pipeline Composition

For application programs that are repeatedly executed for
multiple batches of input data, sub-functions can be pipelined
if:

there is data flow between the two functions;

the sub-functions are allocated to different groups of hard-
ware resources; and

the sub-functions operate in parallel on difterent batches of
input data.

For example, if fn_ 01 and fn_ 234 are sequentially com-
posed as discussed above, they can be further composed in a
pipelined composition as shown in FIG. 12.

Assume that the sub-functions fn 01 and fn_ 234 both
have constant throughput (non-data-dependent Tnext), the
throughputs are the same (Tnext(fno 01)=Tnext(fn_ 234)),
and all the interconnects that connect f_ 01 to fn_ 234 have
constant delays. Then the processing of input data batches B1,
B2, ..., B9 is shown below in Table 3.

TABLE 3

Time fn_ 01 fn_234

Slot fno fnl n2 n3 4
1 B1 B1

2 B2 B2 B1 B1 B1

3 B3 B3 B2 B2 B2

4 B4 B4 B3 B3 B3

5 B3 B3 B4 B4 B4

6 B6 B6 B3 B3 B3

7 B7 B7 B6 B6 B6

8 B8 B8 B7 B7 B7

9 B9 B9 B8 B8 B8

10 B9 B9 B9

Iftwo sub-functions in a pipelined composition do not have
constant throughputs that are the same, buffer storage is
needed for each pair of input and output ports connecting the
sub-functions so as to absorb the difference between the rate

10

15

20

30

35

40

45

50

55

60

65

12

of data production on the source side and the rate of data
consumption on the destination side. Flow control provided
by the interconnect channels can be used to adjust the
throughput based on the data level in these buffers.

The above example can be thought of as a pipelined com-
position having five interconnect channels, as shown in FIG.
13. Each of the interconnect channels should have up to two
buffer storage elements, as shown in the figure.

FIG. 14 shows the flow control mechanism for an intercon-
nect port from out_fn0_0 1400 to in_fn2_0 1402. The for-
ward data channel 1404 will be used to transmit each new
batch of output. Each batch will be accompanied with a “data
valid” status on the forward control and status channel 1406.
When the new batch signified by the “data valid” status is
received by fn2 1402, it will be written into the receive buffer
1408. The buffer has an “almost full” watermark 1410. For as
long as the stored data in the buffer exceeds the watermark, a
“back pressure” signal will be sent back to fn0 1400 on the
backward control and status channel 1412. When fn0 1400
receives this “back pressure” signal, it will temporarily stop
producing output data until the “back pressure” signal goes
away.

In some embodiments, when two sub-functions fha and fnb
form a pipeline composition, a scheduling tool can be used to
determine the time of overlapping execution of the epilogue
and prologue of the same function Toverlap(fna, fna) in a
manner similar to what is described above for sequential
composition.

Closely Coupled Pipeline Stages

Two sub-functions fna and fub in a pipelined composition
are defined to be closely coupled pipeline stages if Tnext(fha)
and Tnext(fnb) are equal to each other and equal to a constant
(The execution throughput is non-data-dependent).

For a closely coupled pipelined composition, no flow con-
trol is necessary for data flow between the source sub-func-
tion and destination sub-fucntion if the following conditions
are met:

interconnects used for data flow between the two stages
have fixed delays. (i.e. circuit connections are used); and

the starting points of tha and fnb have a common timing
reference and are adjusted for delay between the two pipeline
stages.

Under these conditions, the timing of the sequence is
adequate to control the start point of each new data batch. The
rate of producing and consuming data is constant, and is
adjusted by flow control mechanisms as needed.

Loosely Coupled Pipeline Stages

Two sub-functions fna and fub in a pipelined composition
are defined to be loosely coupled pipeline stages if Tnext(fha)
is not equal to Tnext(fub).

If both Tnext(fna) and Tnext(fnb) are constant (non-data-
dependent), it may be possible to extend the length of one of
the program to make Tnext(fna) equal to Tnext(fub). The two
threads can then be closely coupled, but at the cost of some
loss of hardware efficiency.

If either Tnext(fna) or Tnext(fub) is data dependent, then
the pipeline stages are always loosely coupled. Flow control
is then necessary for any interconnect channel from the
source pipeline stage to the destination pipeline stage.
Assuming fna is the source sub-function and fnb is the desti-
nation sub-function, the following are the details of the flow
control mechanism expressed in pseudo-code:



US 9,075,768 B2

13

For source pipeline stage fha:

if (! back__pressue) {
produce__new__output__batch;
transmit_new__batch;

}

For destination pipeline stage fnb:

Receive Input Data:
if (data_ valid__on__input) {
write__data_ to_ buffer;
increment_ data_ level;

Execute fib:
if (! buffer__empty) {
execute__fnb;
decrement__data_ level;

}

The backward status and control port is statically con-
nected to the flag almost_full, which indicates that data level
exceeds the preset watermark.

The size of the buffer required for avoiding loss of data and
the watermark setting can be determined based on the source
pipeline stage throughput, the destination pipeline stage
throughput, the traffic pattern to determine aggregate
throughput in case of data-dependent throughput, and the
delay of the pipeline stages.

In general, the following are some rules for considering
flow control:

If min(Tnext(fna))>=max(Tnext(fnb)), then backward
flow control is not necessary, and the buffer size can also
be minimized.

It average(Tnext(fna))<average(Tnext(fnb)) for a sus-
tained period of time, a proper flow control that is set up
to maintain data coherency will result in very poor effi-
ciency, and therefore is not recommended.

A goal should be that the average(Tnext(fna))=average
(Tnext(fab)) for good efficiency.

Use of Interconnect Resources

As described above, interconnect resources are required
for pipelined compositions. Here are some general rules for
selecting different types of interconnect resources:

for closely coupled pipeline stages, circuit connection is
necessary to guarantee fixed transmission delays;

for loosely couple pipeline stages, both circuit and packet
connections can be used with proper flow control;
for interconnect ports that transmit continuous data flow,

circuit connections with proper bandwidth may use
system resources more efficiently;
for interconnect ports that transmit bursts of data flow,
packet connections may use system resources more
efficiently.
Tteration Process for Complete Application Mapping

For a complete application, especially for an embedded
application, there is usually a system-wide performance
requirement for the throughput or delay. For example, an
application can have a requirement of a throughput of one
new batch of input data every 20 ms. In this case, Tnext=20
ms for all system inputs. Also, an application can require that
the overall delay for one batch of input processing is 10 ms. In
this case, Tdelay=80 ms for the entire system. When system
clock cycle is known, these requirements can be easily trans-
lated to cycles.

Based on the detailed mechanism described above,
embodiments of the present invention use an iterative process

10

15

20

25

30

35

40

45

50

55

60

65

14

of mapping an application to the processor hardware design
of the present invention. FIG. 15 is a flow diagram which
illustrates an iteration process for complete mapping of an
application according to an embodiment of the present inven-
tion.

First, the application is profiled 1500 for computation com-
plexity, data flow pattern and possible data dependency of
execution time. Then a top-down decomposition and map-
ping is performed. A “top” level is selected 1502, and the
decomposition and corresponding composition mechanisms
are determined 1504 as described above based on the profil-
ing 1500. Then the system level requirements are propagated
to the sub-function constraints 1506 (e.g. Tnext(System)=20
ms=>Tnext(fn0)=Tnext(fn1)=8000 cycles, Tdelay
(System)=80 ms=>max(Tdelay(fn0),Tdelay(fnl))=32000
cycles).

The algorithmic sub-fuctions are decomposed 1508, the
hardware resources are partitioned 1510, and the algorithmic
sub-functions are mapped to the partitioned resource group
1512. This process is repeated to the lowest level 1514, 1516.
Then each mapped sub-function is scheduled for the resource
it is mapped to 1518, after which the scheduler output (Tnext,
Tdelay) is examined 1520 and compared to the propagated
constraints (see 1506). Ifall constraints are met 1522, then the
mapping process is finished. However, if all constraints are
not met 1522, then the decomposition 1504, resource parti-
tion 1506, and mapping 1508 processing is repeated and
iterated starting with the next higher level 1524 and going up
(i.e. the steps are repeated with a different “top” level).

Once all constraints are met 1526, all the sub-function
programs are composed from the bottom up so as to form the
complete, executable program for the entire application 1530.

In various embodiments, the iteration process described
above and illustrated by FIG. 15 is guided by heuristics.

The foregoing description of the embodiments of the
invention has been presented for the purposes of illustration
and description. It is not intended to be exhaustive or to limit
the invention to the precise form disclosed. Many modifica-
tions and variations are possible in light of this disclosure. It
is intended that the scope of the invention be limited not by
this detailed description, but rather by the claims appended
hereto.

What is claimed is:

1. A multi-core processor, comprising:

a plurality of processing cores, referred to herein as com-

puting planes,
the computing planes being arranged in a hierarchy of
levels including a highest level and a lowest level, each
of the levels including at least one computing plane,

each of the computing planes including a control plane and
an associated datapath,

each of the control planes including a sequencing instruc-

tion memory that is able to store configuration and con-
trol information applicable to its associated data path,
the configuration information including instructions that
control manipulation and routing of data by its associ-
ated datapath,

each of the control planes being able to receive status

information from its associated data path, and being able
to provide configuration and control information to its
associated data path,

each of the datapaths including at least one data input, at

least one data output, and at least one element, the ele-
ment being one of a compute element that is able to
manipulate data, an interconnect element that is able to
route data, and a storage element that is able to store
data, and



US 9,075,768 B2

15

for at least one of the elements that is in a level above the
lowest level, the functionality of the element being pro-
vided by a computing plane in a level below the level of
the element.

2. The processor of claim 1, wherein at least one of the
compute elements includes an internal buffer register that is
able to provide temporary storage for intermediate results.

3. The processor of claim 1, wherein at least one of the
storage elements is able to perform at least one data process-
ing function.

4. The processor of claim 3, wherein the data processing
function is one of:

computing an address from data;

rounding of data;

saturating of data; and

adding or subtracting of two consecutive data inputs.

5. The processor of claim 1, wherein at least one of the
interconnect elements is able to form a static connection
between two other elements.

6. The processor of claim 1, wherein at least one of the
interconnect elements is able to form dynamic connections
between pairs of other elements, the dynamic connections
being changeable under control of the configuration instruc-
tions supplied by the control plane.

7. The processor of claim 1, wherein at least one of the
interconnect elements includes both a signal transmission
channel and a data transmission channel, the signal transmis-
sion channel being able to transmit a flow control signal in
parallel with data transmitted by the data transmission chan-
nel, the flow control signal being usable for controlling timing
of the flow of data from the data transmission channel.

8. A method for programming the processor of claim 1 to
perform a large algorithmic function by mapping the algo-
rithmic function onto the computing planes of the processor,
the method comprising:

partitioning the large algorithmic function into a first layer

of sub-functions with data flow between the sub-func-
tions and associated flow control;

if one of the sub-functions is not suitable for mapping onto

a computing plane of the processor, partitioning the
sub-function into a lower layer of sub-functions having
data flow between the sub-functions and associated flow
control;

repeating the step of partitioning the sub-functions into

lower layers of sub-functions until all of the lowest level
sub-functions are suitable for mapping onto computing
planes of the processor;
allocating processor time slots and hardware resources to
the sub-functions so as to approximately match the pro-
cessor resources with relative computational and data
flow complexities of the sub-functions; and

configuring interconnects of the processor according to the
data flows between the sub-functions.

9. The method of claim 8, further comprising configuring at
least some of the interconnects for data transmission with
flow control so as to maintain synchronicity of data during
execution of the algorithmic function.

10

15

20

25

35

40

45

16

10. The method of claim 8, further comprising appending
null operations to at least one of the sub-functions so as to
eliminate a data dependency of an execution time of the
sub-function.

11. The method of claim 8, wherein the steps of partition-
ing the large algorithmic function and partitioning the sub-
functions are carried out by an automatic software tool.

12. The method of claim 8, wherein the step of partitioning
the sub function includes partitioning any sub-function hav-
ing a data dependent execution time into sub-functions that do
not have data dependent execution times.

13. The method of claim 8, wherein allocating processor
time slots and hardware resources to a hierarchy of sub-
functions includes:

selecting a level of the processor to be a highest level of

allocation to the hierarchy of sub-functions; and

mapping each of the sub-functions in the hierarchy onto a

computing plane that is at a level of the processor at the
same offset below the highest level as the offset of the
sub-function below the highest layer of the sub-func-
tions in the hierarchy.

14. The method of claim 8, further comprising repeating
the step of allocating processor time slots and hardware
resources so as to achieve load balancing of the hardware
resources.

15. The method of claim 8, wherein configuring the inter-
connects of the processor according to the data flows between
the sub-functions includes combining sub-functions having
fixed execution times and providing flow control mechanisms
s0 as to compose functions having data-dependent execution
times.

16. The method of claim 15, further comprising estimating
the data-dependent execution times based on an input data
range and the data flow pattern.

17. The method of claim 16, further comprising estimating
at least one of an upper bound, a lower bound, and a distri-
bution of the execution times.

18. The method of claim 8, wherein configuring the inter-
connects of the processor according to the data flows between
the sub-functions includes combining sub-functions accord-
ing to at least one of sequential composition, concurrent
composition, and pipelined composition.

19. The method of claim 8, wherein configuring the inter-
connects of the processor according to the data flows between
the sub-functions includes using buffer storage to absorb a
difference between a rate of data production of a first element
and a rate of data consumption of a second element.

20. The method of claim 19, wherein the buffer storage is
configured to produce a “back pressure” signal when an
amount of data stored in the buffer storage exceeds a specified
watermark amount, the back pressure signal causing the first
element to temporarily stop producing output data.

21. The method of claim 8, wherein the step of allocating
processor time slots and hardware resources to the sub-func-
tions further includes using a scheduling tool to schedule
overlapping execution of sub-function epilogues and pro-
logues when possible.

#* #* #* #* #*



